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Abstract

The influence of the presence of a curved (convex) solid wall on the conformations of long, flexible polymer chains is studied in a dense

polymer system and in the athermal limit by means of lattice Monte Carlo simulations. It is found that the chain conformation entropy drives

a reduction of the density at the wall, similar to the flat wall case. The chain end density is higher next to the interface compared to the bulk

polymer (segregation), with the difference increasing with chain length. The wall curvature does not significantly affect the segregation. The

bonds are preferentially oriented in the direction tangential to the wall. The distance from the interface over which this effect is observed is

about two bond lengths. Similar results are obtained when probing the preferential orientation of chain segments. In this case, the perturbed

region has a thickness on the order of the considered probing chain segment length. This suggests that experimental results on the thickness of

the ‘bonded layer’ next to a wall depend on the wavelength of the radiation employed for probing. The chains are ellipsoidal in the bulk and

rotate close to the surface with the large semi-axis of the ellipsoid normal to the line connecting their center of mass with the filler center.

Since there is no energetic interaction with the filler, no adsorption transition is observed, but the chains tend to wrap around the filler once

the gyration radius becomes comparable to the filler radius. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The structure of the interface between a bulk solid

polymer and another medium is a subject of considerable

interest. The macroscopic properties of a polymer matrix

composite are determined to a large extent by the properties

of the interface between the matrix and filler particles or

fibers. Flow and capillarity in narrow channels or filters and

the interaction with membranes are dominated by the

interaction of the fluid with the walls. The structure of the

interface with the substrate and that of the free surface of a

polymeric thin film are important in applications that

require coating. This wide range of applications has driven a

constant interest in the properties of polymeric interfaces.

It is well known that the conformations of polymer

chains are restricted in the neighborhood of impenetrable

interfaces. The structure of the polymer is determined by the

energetics of the interaction with the wall, by the cohesive

energy in the bulk polymer, and by the loss of configura-

tional entropy when the chain approaches the interface. The

entropic force due to the reduction in the number of

accessible chain configurations drives the chain away from

the interface. The excluded volume effect in the bulk

polymer, and an attractive interaction with the wall promote

the opposite trend. The interplay of these factors determines

a structure that is significantly different from that of the bulk

polymer.

These issues have been studied extensively experimen-

tally [1–3], as well as analytically [4–8] and by means of

simulations [9–14]. In the immediate vicinity of a flat

impenetrable wall, the polymer chains are preferentially

aligned in the direction parallel to the interface and have

reduced mobility. This leads to changes in the glass

transition temperature and to a broader relaxation spectrum.

The degree of alignment depends on the details of the

energetic interaction with the wall. A chain may adopt a

‘docking’ type configuration at high temperatures and weak

attractive interactions, and may completely adsorb if the

attraction is strong [15]. The chain collapse in the interface

leads to pronounced alignment on the bond and larger

scales. The volume of polymer affected by the presence of
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the interface (or the thickness of the ‘bonded layer’) is

generally estimated to about two bulk root mean square

gyration radii.

An entropic driving force exists for the segregation of

chain ends in the interface [6]. This effect may be

overridden by energetic interactions with the wall, no

segregation being seen, for instance, in presence of a strong

attraction to the wall. The total bead density may differ next

to a solid wall compared to the bulk [16–18]. The density

profile depends on the relative importance of the energetic

interactions between the wall and the polymer, and within

the polymer itself. Their interplay leads to a denser or a

depleted layer. The variation in density has a significant

effect on chain mobility as well as on diffusion of small

molecules. Similar effects of the local density on chain

mobility are observed at the free surface of a polymer thin

film [18].

While the flat wall problem has been studied extensively,

not much work has been done on the effect of the

impenetrable wall curvature on the structure of the polymer

next to the interface [19]. The present study addresses this

problem in the athermal limit in which only excluded

volume interactions are considered. The goal is to first

understand how the purely entropic effect controls the

structure of the interface. The contribution of the energetic

interactions will be discussed in the sequel to this paper.

This work is part of an effort to understand the structural

origins of the exceptional mechanical properties exhibited

by polymer-based nanocomposites with ceramic nanofillers

[20,21]. These materials show significantly enhanced

stiffness and strength compared to the similar material

filled with regular micron size ceramic particles. Most

importantly, a gain in these properties does not compromise

ductility, as is typically the case with conventional

materials.

A number of theories have been proposed to explain this

behavior. One of these, the ‘bonded polymer layer’ theory

[22], is based on the observation that, at the same volume

fraction, the total interfacial area in the nanocomposite is

much larger than that in the polymer filled with micron sized

particles. On the basis of the insight gained from studies of

the polymer structure next to a flat impenetrable interface, it

is hence conjectured that the total volume of ‘bonded

polymer’ (confined polymer chains next to the wall)

represents a large fraction of the volume of the nanocom-

posite and therefore, the properties of this confined material

determine the macroscopic properties of the system.

However, the available experimental results on the

existence of the bonded polymer layer are contradictory

[23,24]. It is also unclear how thick the layer surrounding

each particle is and, most importantly, what are the

properties of the polymer in the interfacial region.

More recently, the ‘double network’ theory was

proposed. This idea is based on the observation that the

reduction in particle size entails a similar reduction in the

inter-particle spacing, and that special macroscopic proper-

ties are obtained when the average distance between

particles becomes comparable with the bulk radius of

gyration of the polymer chains. This creates conditions for a

chain to connect two or more particles, hence forming a

network that provides additional strength [25].

In an effort to distinguish between these theories, the

present work provides new information on the effect of the

particle curvature on the structure of the polymer at

the interface. The article is organized as follows: the

modeling and simulation procedure are presented in Section

2, the results are discussed in Section 3, and the conclusions

are presented in Section 4.

2. Modeling and simulation procedure

This study is performed by means of lattice Monte Carlo

(MC) simulations using the bead-spring model. The

simulation cell is shown in Fig. 1. The volume surrounding

a spherical particle of radius R is filled with a monodisperse

population of polymer chains of length N 2 1 bonds (N

beads). The volume of the particle is a forbidden zone for

the chains. The polymers occupy a bcc lattice that fills the

allowed volume. A unit cell of that lattice is shown

schematically in the lower left corner of the simulation

cell in Fig. 1. The coordination on the bcc lattice is 14, the

bonds linking either corner sites or a corner with the body

center site. This type of lattice was chosen because it

minimizes bond length fluctuations, while allowing for

denser systems compared to the simple cubic lattice (which

preserves the bond length). Periodic boundary conditions

are imposed on all faces of the simulation cell. Hence, the

simulated system represents a 3D square array of spherical

particles immersed in the polymer matrix. The dimension L

Fig. 1. Schematic representation of the model and the coordinate system.

The volume between the spherical particle and the boundary of the

simulation cell is occupied by a bcc lattice (unit cell shown) on which the

chains evolve.
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of the cell was selected large enough for dilute limit

conditions (in what regards the filler particles) to prevail. In

all calculations reported here, L was taken to be 50 bcc unit

cells, while the parameter R varied between 2 and 12. This

insures that the layer of perturbed polymer is thinner than

the distance between the particle surface and the simulation

cell boundaries, which in turn, eliminates image effects. The

full filler size effect, including the interaction of the

perturbed layers surrounding neighboring fillers and in

presence of energetic interactions will be discussed in the

sequel to this article.

The simulation cell is filled with chains of the desired

length and at the desired bead number density, r, by

performing self avoiding random walks (SAW) on the bcc

lattice. The excluded volume restriction is imposed during

the generation process. According to it, in the usual SAW,

one generates the walk until the whole chain is generated or

the excluded volume condition cannot be fulfilled. In this

second case, one has to discard the current chain and start a

completely new one. This procedure may be used success-

fully in low-density systems. At high densities however, the

method becomes impractical. Here, a slightly modified

method which is somewhat related to earlier ideas by

McCrackin [26], is used. According to this procedure, the

chain generation is not stopped at the first violation of the

excluded volume condition, but rather continued until

the whole chain is constructed. The probability for overlap

generation is controlled using an idea similar to that of the

importance sampling MC. A ‘tolerance to overlaps’

parameter is included in the algorithm and, if an overlap

is necessary, the step is accepted/rejected based on the

overall number of overlaps in the system and the occupancy

index for the current site. The value of this parameter is

adjusted such to minimize the total number of overlaps in

the system, while allowing for the generation of the whole

chain population.

The overlaps produced during chain generation are

eliminated in a subsequent equilibration. During this

stage, the system is evolved by a simple sampling MC

procedure. Two types of moves are made: the ‘slithering

snake’ or reptation, and the ‘crack shaft’ move [27]. The

reptation move consists in sliding the chain along its contour

by one bond length, while the crack shaft move entails a

local rotation of a group of 3 bonds about an axis defined by

the neighboring chain segments. The two types of moves are

performed with equal probability. A virtual energetic cost is

imposed for each overlap, such that the procedure leads to

their quick elimination. This energetic threshold is chosen

large enough such that no further overlaps are produced

during equilibration. No other energetic interactions are

imposed, the chains being free to move on the lattice in the

limit of the excluded volume constraint (no two beads can

occupy a lattice site). The simulation evolves at constant

number of beads and at constant volume. The average bond

and segment orientation is monitored during equilibration to

insure randomness. Both measures reach a stationary value

after several tens of thousands of MC equilibration steps.

The equilibration phase was run for 3 million MC steps

(MCS), which is considered sufficient for the center of mass

of a representative chain to translate over more than one root

mean square radius of gyration. In this study, the chain

diffusion was not monitored during the equilibration phase

however, one million MCS is observed to correspond to the

disentanglement time of chains of 100 beads in similar MC

simulations reported in Ref. [28].

Once the excluded volume condition is imposed, a

production phase begins. The same algorithm is employed

for production. The polymer structure is obtained by

averaging over time and over a number of replicas of the

system in order to reduce statistical noise.

The results reported here are obtained from runs with

225,000 beads and chains of N 2 1 ¼ 32; 100 and 200

bonds. The imposed bead number density is r ¼ 0:85: The

filler particle radius R was taken to be 2, 4, 8 and 12 in

separate simulations. All dimensions are normalized by the

unit cell size of the underlying lattice. Typically, the SAW

procedure led to 200–400 chain overlaps, which are

generally eliminated during the first 30,000 MC equili-

bration steps. The production phase was run for at least 5

million steps. The results were averaged over 20 replicas of

the system. The replicas are statistically uncorrelated, each

being a totally new realization of the system.

The flat wall case corresponds to the limit R !1: In

these simulations, the filler particle is eliminated and

impenetrable flat wall conditions are imposed on two

opposing surfaces of the simulation cell in Fig. 1. The

periodic boundary conditions are preserved on the other

faces of the cell. In this case, the coordinate r is taken in the

direction perpendicular to the two walls, and the size L of

the simulation cell is kept unchanged at 50. This confined

film configuration leads to faster convergence of the

averages because similar structure is generated in the

vicinity of each wall and hence the number of replicas that

need to be considered may be reduced by half.

The polymer structure next to the wall was monitored by

dividing the polymer volume in bins in the radial direction,

r, and by taking advantage of the spherical symmetry of the

problem. The thickness of each bin was taken to be equal to

one unit cell of the bcc lattice, except in the evaluation of the

chain structure on the chain scale where the bin size is twice

this value.

The number density was computed in each bin for both

the overall bead population and for the chain end beads. The

average bond orientation was evaluated based on the second

Legendre polynomial Pb
2 ¼ ð1=2Þð3 cos2ub 2 1Þ; where the

angle ub is made by the bond vector with the radial direction

at the current site (Fig. 1). In the case of the flat wall, the

radial direction is replaced by the normal to the wall. For

random orientation of bonds, Pb
2 vanishes. A preferential

orientation in the tangential direction leads to negative Pb
2

values. The direction tangential to a lattice sphere is defined

here as being perpendicular to the line connecting the
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current bead with the center of the sphere. If all bonds are

oriented in the tangential direction ðub ¼ 908Þ; Pb
2 ¼ 20:5:

The orientation was also computed for chain segments of

length Ns ¼ 4 and 8, using a similar definition of the

segment orientation, Ps
2: The angle us is made by the end-

to-end vector of the segment (between beads i and i þ Ns)

and the radial vector passing through bead i. The segment is

conventionally assigned to the bin in which bead i resides.

Results for a certain bin are obtained by averaging over all

beads in that bin and over all replicas of the system.

3. Results and discussion

3.1. Polymer structure on the bond scale

The polymer structure was studied on the scale of a bond

in the vicinity of curved (convex) and flat surfaces. Fig. 2

shows the results obtained for the system of N 2 1 ¼ 100

bonds per chain, and a filler particle of radius R ¼ 8:
The bead number density variation with the distance

from the surface of the particle ðr 2 RÞ is shown in Fig. 2a.

The plot is normalized by the bulk (nominal) density, r. The

density at the wall is lower than that in the bulk (large r 2 R

in Fig. 2), situation similar to that encountered next to a flat

wall. The wall limits the number of configurations a

neighboring chain may take, which leads to an entropic

force that drives the chains away from the interface. The

depletion depends on the mean density, being more

pronounced in low-density systems. When the (bulk)

mean density increases, packing counteracts the effect of

the entropic forces reducing depletion.

For completeness, we note that in simulations in which

energetic effects are considered, the density at the wall

depends on the relative importance of the energetic and

entropic effects. For a flat interface and in the case in which

the polymer chains interact with the wall through an

attractive potential, the density is higher at the wall [17].

When there is no interaction with the wall, but the cohesive

energy of the polymer is taken into account, the density is

smaller at the wall compared to the bulk [18].

The normalized chain end density is shown in Fig. 2b.

Enrichment in chain ends of about 10% is seen in the layer

next to the wall, with a small opposite effect manifested in

the next layer. The thickness of the polymer layer affected

by the presence of the wall is essentially one bond length.

The chain end segregation reported here is rather small

compared with published data for the flat wall. As discussed

below, the difference is due in part to the curvature of the

wall. It is also known that lattice MC models predict less

chain end segregation than similar off-lattice models.

Entropy driven chain end segregation to a flat impene-

trable wall has been repeatedly reported in the literature [18,

29,30]. This effect is due to the fact that the number of

forbidden chain configurations is larger for chains that do

not end at the wall compared with those that have at least

Fig. 2. The normalized bead number density (a), normalized chain end

density (b) and the measure of bond orientation Pb
2 (c), as a function of

distance from the wall, for the system with R ¼ 8 and N ¼ 101: The

normalization is made with the respective bulk quantities. The uncertainty

in computed values is largest at small r 2 R: Its maximum value here is 2%.
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one of the ends in the interface [6]. This provides an

entropic driving force for chain end segregation.

Fig. 2c represents the measure of bond orientation, Pb
2:

The bonds are preferentially oriented in the tangential

direction (negative Pb
2) in the first layer next to the curved

wall. A marginal opposite effect is seen in the second layer,

which is correlated with the orientation in the first bin; for

the bonds in the first layer to be oriented mostly parallel to

the interface, it is geometrically necessary for the bonds

in the adjacent layer to be preferentially oriented

perpendicular to the interface. No preferential bond

orientation is seen farther from the wall ðPb
2 ¼ 0Þ:

Similar effects have been observed for the flat interface

in absence of energetic interactions; furthermore, an

attractive interaction with the wall leads to adsorption and

to a quasi-temperature-independent preferential orientation

of bonds [16,17].

These results suggest that, when measured on the bond

scale, the thickness of the ‘perturbed polymer layer’ is rather

limited. In fact, energetic effects being absent, the thickness

of this layer is given by the persistence length of the chain

(chain stiffness). In the present case of essentially freely

jointed beads, the persistence length is one bond only.

Hence, the ‘perturbed’ polymer volume fraction being

small, these observations do not support the ‘bonded

polymer layer’ theory as a realistic description of the

physics in this system.

Fig. 3 shows the variation of the chain end density and of

Pb
2 with the chain length, both computed in the bin next to

the wall. As expected, it is seen that an increase in chain

length favors chain end segregation at the wall (Fig. 3a).

The variation of N has no effect on the bond orientation

(Fig. 3b). In the athermal limit the preferential bond

orientation is a purely geometric effect not influenced by

the entropy, and hence independent of chain length.

Although increasing the chain length leads to a larger

entropic driving force for chain retraction from the wall, we

see only a modest 2% reduction in the total density at the

wall as the chain length changes from N 2 1 ¼ 32–200:
The effect of the particle curvature is also shown in Fig. 3.

Results obtained for the flat wall are included for reference.

The entropic force leading to chain end segregation is more

important in the flat wall case. This is a consequence of the

fact that the spherical excluded volume of the filler has a

weaker effect in reducing the number of allowed chain

configurations compared with the much more constraining

flat wall. The data in Fig. 3 are re-plotted in Fig. 4 as a

function of particle radius and for various chain lengths

(1=R ¼ 0 corresponds to the flat wall). No correlation is

apparent between the two measures of the polymer structure

discussed here, and the relative size of the filler and polymer

chains (gyration radius). The dependence of the total density

at the wall on wall curvature is not shown since this

parameter is essentially insensitive to the wall curvature for

the investigated range of R.

A weaker effect of wall curvature is observed on bond

alignment. The small fillers (large curvature) lead to less

preferential orientation than the large particles and the flat

surface. The thickness of the polymer layer in which bonds

are preferentially oriented is independent of chain length

and particle size.

Hence, when measured on the scale of a bond, the

polymer structure does not appear to be significantly

affected by the presence of the wall at distances larger

than a bond length from the surface of the filler.

Furthermore, increasing wall curvature leads to a further

reduction of this effect. This is due to the absence of any

persistence length along the chain. We conjecture that these

conclusions remain valid in the athermal system when

reducing the inter-filler spacing below a chain gyration

radius since, on the scale of a bond, the presence of the wall

is manifested only over one bond length within the polymer

matrix. This conjecture needs to be verified by future

simulations.

Fig. 3. Variation with the chain length of the normalized chain end number

density (a) and of Pb
2 (b). The normalization is made with the respective

bulk quantities.
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3.2. Polymer structure on the chain segment scale

The structure of the polymer probed on scales larger than

the bond scale provides additional insight. To this end, Ns ¼

4 and 8 bond long chain segments are considered and the

segment orientations as well as the end-to-end segment

length are computed as a function of the distance from the

surface of the particle. A segment connecting beads i and j

belonging to the same chain is conventionally assigned to

the bin in which bead i resides. The system with N 2 1 ¼

100 and R ¼ 8 is considered in this analysis.

The end-to-end segment length is shown in Fig. 5 as a

function of the distance from the surface of the filler, r 2 R:
A chain segment (Ns beads) in the bulk melt has an end-to-

end distance of R2
es ¼ Cb2ðNs 2 1Þ; where C is a constant

that accounts for the swelling of the chain with respect to the

random walk due to its intrinsic stiffness (angles imposed by

the lattice). In the present case of chains occupying a bcc

lattice of unit cell size equal to one, the average bond length

is b ¼ 0:92: Based on the bulk segment lengths in Fig. 5 we

obtain C ¼ 1:16:
The segment length decreases by about 5% in the

neighborhood of the particle. This contraction is the direct

effect of the confinement on the SAW. However, the

average length of the segments originating in the first bin is

similar to that in the bulk. This is due to the fact that such

vectors point into the bulk, away from the interface, and

hence are not subjected to the (mainly radial) constraint

imposed by the particle. The thickness of the layer in which

the segment length is affected by the presence of the wall is

on the order of the length of the segment considered (Fig. 5).

The variation of the average segment orientation Ps
2 with

the distance from the wall is shown in Fig. 6 for the two

segment lengths considered. The data in Fig. 2c, corre-

sponding to the bond orientation are reproduced for

reference. As with the bonds, the segments are preferentially

oriented in the tangential direction. The thickness of the

Fig. 5. End-to-end segment length as a function of the distance from the

wall for segments of Ns ¼ 4 and 8 bonds, and for the system with R ¼ 8 and

N ¼ 101:

Fig. 6. Average segment orientation, Ps
2; as a function of the distance from

the wall for segments of Ns ¼ 4 and 8 bonds, and for the system with R ¼ 8

and N ¼ 101:

Fig. 4. Variation of the normalized chain end number density (a) and of Pb
2

(b) with the wall curvature. The normalization is made with the respective

bulk quantities.
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affected region is similar to that measured in Fig. 5, in

connection with the variation of segment length. It

correlates closely with the length of the probing segment,

Res.

The three curves may be obtained analytically based on a

simple geometric argument according to which Ps
2 results by

averaging the second Legendre polynomial over the surface

of the sphere of radius equal to the length of the end-to-end

vector, and centered at r 2 R from the particle surface

(Fig. 7). For averaging, all directions are allowed, except

those that intersect the surface of the particle (dotted line in

Fig. 7). This leads to the equation

Ps
2ðxÞ ¼

1

4p

ð2p

0

ðj

0

1

2
ð3 cos2u2 1Þ sin u du dw: ð1Þ

The two parameters x and j are defined in Fig. 7. In the

figure, S represents the length of the end-to-end vector

considered.

The data in Figs. 5 and 6 and those in Figs. 2 and 3

suggest that, in the athermal limit, the volume of polymer

affected by the presence of the solid wall depends on the

probing metric. The thickness of this region is independent

of chain length as long as the chains are longer than the

probing segment. Published results support this observation.

Wattenbarger et al. [31,32] studied chain conformations

next to a flat wall in the athermal limit in both 2D and 3D

and determined that the effect of the surface on the average

chain dimensions (sampling on the chain scale) extends

about twice the radius of gyration within the polymer

matrix, or approximately one end-to-end distance [12].

Baschnagel and Binder [17] identify several length scales

characterizing the size of the interfacial region. In their non-

athermal system, these parameters vary with temperature.

When the cohesive energy in the polymer is taken into

account, the thickness of the interfacial layer measured on

the scale of the chain becomes dependent on the value of the

cohesion energy, with the thickness decreasing with

increasing cohesion [18]. However, when correcting for

the effect of the cohesion energy on the chain end-to-end

vector, the thickness results to be approximately one end-to-

end distance as found in the present case.

This observation is relevant for the interpretation of

experimental results. In experiments, the structure of the

polymer matrix is probed with a radiation of certain

wavelength and only features on that length scale are

detected. The present analysis suggests that the measured

thickness of the ‘bonded polymer layer’ about each particle

should be on the order of the probing wavelength. Hence,

the volume of perturbed polymer evaluated from such

measurement depends on the wavelength of the probing

radiation and the total interfacial area in the material.

3.3. Polymer structure on the chain scale

The structure on the chain scale is studied next. A good

measure of the chain size and shape is the gyration tensor Gij

[33]. For a chain of N beads, the tensor reads

Gij ¼
1

N

XN
k¼1

Xk
i 2 XCM

i

� �
Xk

j 2 XCM
j

� �
ð2Þ

where Xk ¼ {Xk
1;Xk

2;Xk
3} is the position vector of bead k,

and CM stands for the center of mass of the current chain.

The trace of this tensor equals the mean square radius of

gyration of the chain, R2
g:

The chains are not spherical in the bulk, with their large

semi-axis being
ffiffiffiffiffi
kl1l

p
; where kl1l is the system average the

largest eigenvalue of G. Fig. 8a shows the three eigenvalues

for chains having their center of mass at various distances

from the center of the filler. In the bulk, at large r 2 R; the

three eigenvalues are kl1l ¼ 15:2; kl2l ¼ 3:4; kl3l ¼ 1:3;
which suggests that the chain is a flattened ellipsoid. The

ratio of the three eigenvalues is 11.7:2.6:1, while the

corresponding ratio obtained from a random walk is

12.07:2.72:1 [34]. The three average eigenvalues sum up

to 19.9, which equals the mean square radius of gyration

computed by

R2
g

D E
¼

1

N

XN
k¼1

ðRk 2 RCMÞ2

* +
;

as it should. Here, Rk;CM are position vectors of bead k and

of the center of mass, respectively. The large semi-axis (the

eigenvector corresponding to the largest eigenvalue) is

randomly oriented in space. This provides another measure

of the isotropy of the bulk after equilibration.

Chains that are close to the filler are distorted (Fig. 8a).

Interestingly, the distortion is more pronounced in the

direction of the large semi-axis and for chains having their

center of mass within the filler, i.e. those that ‘wrap around’

the spherical particle. The chains having their center of mass

in the first bin (here of thickness 2) next to the filler surface

are essentially undistorted. This may occur only if the

ellipsoids rotate next to the filler with their large semi-axis

in the direction tangential to the sphere. A similar

observation was made for the flat interface and in absence

Fig. 7. Schematics of allowable directions for the segment end-to-end

vector in the vicinity of a curved wall (radius of curvature R ). S represents

the bulk length of the end-to-end vector considered. Segments that intersect

the surface of the particle are not allowable due to the excluded volume

constraint. Ps
2 may be obtained by averaging over the sphere of radius S

shown by the dotted line.
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of strong attractive interaction between polymer and wall

[15]. As observed here, chains do not undergo an adsorption

transition, but rather they are ‘docking’ to the filler particle.

Furthermore, the results obtained for filler radii R ¼ 8

and 12 are similar. In both cases, the filler radius is larger

than the radius of gyration of the chains. When this

relationship reverses (e.g. for R ¼ 2), the filler may be

placed within a chain coil without significantly distorting it.

These conclusions are supported by the data shown in

Fig. 8b which represents the variation of Pc
2 with the

position of the chain center of mass with respect to the

center of the spherical filler. Pc
2 is the second Legendre

polynomial computed based on the angle made by the line

connecting the filler center and the chain center of mass, and

the eigenvector corresponding to the largest eigenvalue of

the gyration tensor G. Negative Pc
2 values represent

preferential orientation of the ellipsoidal chains with their

large semi-axis in the direction tangential to the spherical

filler. The chains having their center of mass within the filler

are fully aligned, as expected ðPc
2 ¼ 20:5Þ: Chains having

their center of mass as far as one rms gyration radius away

from the wall are preferentially aligned. Again, the degree

of alignment is independent of filler radius once this is larger

than the rms radius of gyration of the chains. No preferential

alignment is seen in the case of the smallest filler ðR ¼ 2Þ:

3.4. Chain mobility

The chain mobility was evaluated as a function of the

distance from the solid wall. The mean square displacement

of beads is used as a measure of mobility. The diffusion

coefficient may be derived from this quantity in the long

time limit.

Simulating chain dynamics in MC models is not as

straightforward as in models that incorporate real time (e.g.

molecular dynamics). In general, it must be insured that

only moves that perturb the structure locally are allowed.

With this precaution, it has been reported in the literature

that one recovers in MC simulations the Rouse dynamics,

the cross-over to reptation and the free diffusion of the chain

[28].

As in the previous analysis, the polymer volume about

the filler is divided in spherical bins, each bin having a

thickness of 2. The beads are assigned to the bin in which

they reside at time zero. The trajectory of each bead is traced

for a relatively short period of time (,3000 MCS) during

the production phase, and the mean square displacement in

the radial and tangential directions is computed. These

quantities are averaged over all beads in the respective bin

and over all replicas of the system. The trajectory is traced

for a short time interval such that the beads do not travel

excessively, which would render artificial their assignment

to the bin from which they originate.

The results obtained in this study are similar to those for

the flat interface. The bead diffusion coefficient in the

direction tangential to the wall is similar to that in the bulk,

even though the bead density at the wall is lower than the

bulk value. This is due to the fact that the depleted layer is

rather thin (one bond length only) and even the chains that

wrap around the filler have most of their beads in the region

with bulk density. Therefore, their mobility must be that of

the bulk. The mobility in the direction normal to the wall is

reduced for beads located in the first bin (within a distance

of 2 from the wall) and is similar to the bulk value at larger

distances. The chain mobility was not evaluated, but it is

expected that those chains having beads in the first bin have

a lower mobility in the radial direction than those in the

bulk.

Fig. 8. (a) Variation of the eigenvalues of the gyration tensor G with the

distance between the chain center of mass and the wall. The chains are

flattened ellipsoids in the bulk, with l1 . l2 . l3. Chains with the center

of mass within the filler are elongated in the direction of the large semi-axis

of the ellipsoidal coil. Each data point corresponds to a radial bin of

thickness 2. The largest error bar on measured quantities (for smallest

r 2 R) is 4%. (b) Variation of Pc
2 with the distance between the chain center

of mass and the wall. Chains with their center of mass closer than a rms

radius of gyration from the filler surface tend to orient with their large semi-

axis in the direction tangential to the spherical filler (‘docking’ transition).

The error bar on measured quantities is no larger than ^0.1.
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4. Conclusions

The polymer structure and mobility in the vicinity of a

curved impenetrable interface was studied by means of

lattice Monte Carlo simulations in the athermal limit using

the bead-spring model. It was observed that the bead

number density is lower at the wall than in the bulk and that

the chain ends segregate at the wall. These effects increase

with increasing chain length. The wall induces preferential

bond and chain segment orientation in the tangential

direction. The thickness of the perturbed polymer layer

depends on the probing metric. This suggests that

experimental measurements of the perturbed polymer

volume in a nanocomposite or a polymeric thin film depend

on the radiation wavelength used for probing. The degree of

preferential orientation does not depend on chain length and

decreases with increasing wall curvature. The chains have

the shape of a flattened ellipsoid in the bulk. Next to the

wall, they rotate with their large semi-axis in the direction

tangential to the spherical wall, with no change of coil size

(‘docking’ transition). Fillers having radii larger than the

rms gyration radius of the chain lead to similar structure on

the scale of the chain, while smaller fillers leave both the

size and the orientation of the coils unperturbed. The bead

mobility in the direction tangential to the wall is similar to

that in the bulk. Normal to the spherical filler, the bead

mobility is smaller in the immediate neighborhood of the

wall and recovers the bulk value at larger distances.
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